DISSERTATION IMPACT OF BACK–CONTACT MATERIALS ON PERFORMANCE AND STABILITY OF CdS/CdTe SOLAR CELLS

نویسنده

  • Samuel H. Demtsu
چکیده

OF DISSERTATION Impact of Back-contact Materials on Performance and Stability of CdS/CdTe Solar Cells Thin-film CdTe based solar cells are one of the leading contenders for providing lowcost and pollution-free energy. The formation of a stable, low resistance, non-rectifying contact to p-CdTe thin-film is one of the major and critical challenges associated with this technology in the fabrication of efficient and stable solar cells. The premise of this thesis is a systematic study of the impact of back-contact materials on the initial performance and the degradation of CdS/CdTe solar cells. Two different back-contact structures that incorporate Cu as a key element are investigated in this study: (a) Cu1.4Te:HgTe-doped graphite and (b) evaporated-Cu back contacts. The effect of Cu inclusion is not limited to the back–contact layer where it is deposited. Cu is a known fast diffuser in p-CdTe, and therefore, a significant amount of Cu reaches both the CdTe and CdS layers. Hence, the effect of the presence of Cu on the individual layers: back-contact, the absorber (CdTe), and the window (CdS) layers is discussed respectively. The effect of different metals used to form the current-carrying electrode following the Cu layer is also evaluated. Devices are studied through current-voltage (JV) measurements at different temperatures and intensities, quantum efficiency (QE) measurements under light and voltage bias, capacitance-voltage (CV), drive-level-capacitance-profiling (DLCP), and time-resolved photoluminescence (TRPL) measurements. Numerical simulation is also used to reproduce and explain some of the experimental results. In devices made without Cu, a current-limiting effect, rollover (distortion) in the

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Accelerated Stress Testing and Diagnostic Analysis of Degradation in CdTe Solar Cells

Solar cell module reliability is inextricably linked to cell-level reliability. This is particularly so with thin-film technologies. In CdTe, reliability issues historically associate with back contact stability and the use of Cu as an extrinsic dopant. Using a simple approach by which identical cells are heated under open-circuit bias and 1-sun illumination, degradation activation energies of ...

متن کامل

Photoluminescence Studies on Cu and O Defects in Crystalline and Thin-film CdTe

Polycrystalline thin-film CdTe is one of the leading materials used in photovoltaic solar cells. One way to improve device performance and stability is through understanding how various process steps alter defect states in the CdTe layer. Low-temperature photoluminescence (PL) studies show a 1.456-eV PL peak in single-crystal CdTe that is likely due to a Cui-OTe defect complex. A similar peak, ...

متن کامل

Polycrystalline Thin-Film Cadmium Telluride Solar Cells Fabriacted by Electrodeposition

This publication was reproduced from the best available copy Submitted by the subcontractor and received no editorial review at NREL NOTICE This report was prepared as an account of work sponsored by an agency of the United States government. Neither the United States government nor any agency thereof, nor any of their employees, makes any warranty, express or implied, or assumes any legal liab...

متن کامل

The Improved Intrinsic Stability of CdTe Polycrystalline Thin Film Devices

A systems-driven approach linking upstream solar cell device fabrication history with downstream performance and stability has been applied to CdS/CdTe small-area device research. The best resulting initial performance (using thinner CdS, thicker CdTe, no oxygen during VCC, and the use of NP etch) was shown to simultaneously correlate with poor stability. Increasing the CdS layer thickness sign...

متن کامل

The challenges of organic solar cells

fossil fuel reserves is causing major changes in atmospheric carbon dioxide and associated climate change. Clearly, this is an untenable situation and alternative renewable energy sources must be found. The concept of harvesting the sun’s energy to create electrical power is an obvious answer and the principles of ‘photovoltaics’ (PV) (the direct conversion of ‘photons to volts’) have been demo...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2006